Autofluorescence allows gathering of information about the metabolic status of the retina. This technique based on the ability of tissues to emit more or less fluorescence depending on the amount of accumulated lipofuscin to be excited by light at specific wavelengths and provides the opportunity to evaluate the retinal functional status. Since OCT obtains a detailed picture of the retinal anatomy, several studies have evaluated the structure/function in patients with AMD and correlated the two techniques. Bearelly and colleagues46 reported that there was a significant association between OCT and autofluorescence findings and that marked hyperfluorescence at the edges of the plaques of GA correlated with hyperreflective changes in the outer retinal layers identified by OCT that did not occur in healthy retinas with normal autofluorescence and OCT (Figure 15). These findings used a combination of both techniques to determine the patterns of progression of GA plaques in patients with AMD, which had been targeted previously by other authors as discussed below.47
Autofluorescence currently is the most frequently used test to assess disease progression in dry AMD; however, OCT provides additional information, so its role has not been ruled out in the study of these patients to the extent that some authors have proposed methods based on OCT to evaluate progression of atrophic plaques, as described in the following section.17